Bài viết dưới đây gợi ý các bạn một số cách giải phương trình logarit khác cơ số. Bởi vì phương trình logarit khác cơ số không phải là một phương trình mẫu mực. Cho nên trong quá trình tìm tòi lời giải thì các bạn cần linh hoạt giữa các phương pháp giải.
I. CÁCH GIẢI PHƯƠNG TRÌNH LOGARIT KHÁC CƠ SỐ BẰNG ĐỔI CƠ SỐ
Công thức đổi cơ số như sau: . Trong đó a, b, c là các số thực dương và b khác 1. Thường thì phương pháp đổi cơ số cho các phương trình khác cơ số chỉ hữu hiệu khi biểu thức trong các logarit giống nhau.
Ví dụ minh họa:
Giải phương trình .
Lời giải:
Điều kiện xác định
![]()
![]()
![]()
Vậy phương trình đã cho có nghiệm duy nhất
II. CÁCH GIẢI PΗƯƠNG TRÌNH LOGARIT KHÁC CƠ SỐ ĐẶT ẨN PHỤ ĐƯA VỀ PHƯƠNG TRÌNH MŨ
Khi biểu thức dưới các dấu logarit khác nhau thì các bạn nên nghĩ đến phương pháp này. Gợi ý là ta có thể đặt một logarit bằng t. Sau đó rút thế ngược lại để được phương trình mũ.
Ví dụ minh họa:
Giải phương trình
Lời giải:
Điều kiện xác định :
Đặt
.
Phương trình trở thành:Hàm số
là hàm số nghịch biến nên phương trình
có nghiệm duy nhất
.
Vớithì
Vậy phương trình đã cho có nghiệm duy nhất
III.CÁCH GIẢI PΗƯƠNG TRÌNH LOGARIT KHÁC CƠ SỐ BIẾN ĐỔI TƯƠNG ĐƯƠNG
Đối với một số phương trình logarit khác cơ số, biến đổi tương đương có thể giải được phương trình.
Ví dụ minh họa:
Giải phương trình sau
Lời giải:
Điều kiện xác định:
Ta có:
Vậy phương trình đã cho vô nghiệm.
IV. CÁCΗ GIẢI PHƯƠNG TRÌNH LOGARIT KHÁC CƠ SỐ BẰNG ĐÁNH GIÁ HAI VẾ
Nếu phương trình có dạng xác định trên miền D. Đồng thời
và
với mọi giá trị x thuộc miền D thì phương trình đã cho chỉ có nghiệm khi dấu bằng của các bất phương trình trên xảy ra.
Ví dụ minh họa:
Giải phương trình
Lời giải:
Điều kiện :
![]()
Với
thì :
•.
• Mặt khác.
Do đó phương trình đã cho có nghiệm duy nhất
Trên đây là một số ví dụ và gợi ý giúp các bạn có ý tưởng trong việc chinh phục phương trình logarit không mẫu mực. Chúc các bạn thành công!
Xem thêm: